Exercices supplémentaires (tests et boucles)

Sommaire

Index

Exercice 1

Ecrire un algorithme qui demande un nombre à l’utilisateur, et l’informe ensuite si ce nombre est positif ou négatif (on laisse de côté le cas où le nombre vaut zéro).

Exercice 2

Ecrire un algorithme qui demande deux nombres à l’utilisateur et l’informe ensuite si leur produit est négatif ou positif (on laisse de côté le cas où le produit est nul). Attention toutefois : on ne doit pas calculer le produit des deux nombres.

Exercice 3

Ecrire un algorithme qui demande trois noms à l’utilisateur et l’informe ensuite s’ils sont rangés ou non dans l’ordre alphabétique.

Exercice 4

Ecrire un algorithme qui demande un nombre à l’utilisateur, et l’informe ensuite si ce nombre est positif ou négatif (on inclut cette fois le traitement du cas où le nombre vaut zéro).

Exercice 5

Ecrire un algorithme qui demande deux nombres à l’utilisateur et l’informe ensuite si le produit est négatif ou positif (on inclut cette fois le traitement du cas où le produit peut être nul). Attention toutefois, on ne doit pas calculer le produit !

Exercice 6

Ecrire un algorithme qui demande l’âge d’un enfant à l’utilisateur. Ensuite, il l’informe de sa catégorie :

Exercice 7

Ecrire un algorithme qui demande à l’utilisateur un nombre compris entre 1 et 3 jusqu’à ce que la réponse convienne.

Exercice 8

Ecrire un algorithme qui demande un nombre compris entre 10 et 20, jusqu’à ce que la réponse convienne. En cas de réponse supérieure à 20, on fera apparaître un message : « Plus petit ! », et inversement, « Plus grand ! » si le nombre est inférieur à 10.

Exercice 9

Ecrire un algorithme qui demande un nombre de départ, et qui ensuite affiche les dix nombres suivants. Par exemple, si l’utilisateur entre le nombre 17, le programme affichera les nombres de 18 à 27.

Exercice 10

Réécrire l’algorithme précédent, en utilisant cette fois l’instruction Pour

Exercice 11

Ecrire un algorithme qui demande un nombre de départ, et qui ensuite écrit la table de multiplication de ce nombre, présentée comme suit (cas où l’utilisateur entre le nombre 7) :

Table de 7 :
7 x 1 = 7
7 x 2 = 14
7 x 3 = 21

7 x 10 = 70

Exercice 12

Ecrire un algorithme qui demande un nombre de départ, et qui calcule la somme des entiers jusqu’à ce nombre. Par exemple, si l’on entre 5, le programme doit calculer :

1 + 2 + 3 + 4 + 5 = 15

NB : on souhaite afficher uniquement le résultat, pas la décomposition du calcul.

Exercice 13

Ecrire un algorithme qui demande un nombre de départ, et qui calcule sa factorielle.

NB : la factorielle de 8, notée 8 !, vaut

1 x 2 x 3 x 4 x 5 x 6 x 7 x 8

Exercice 14

Ecrire un algorithme qui demande successivement 20 nombres à l’utilisateur, et qui lui dise ensuite quel était le plus grand parmi ces 20 nombres :

Entrez le nombre numéro 1 : 12
Entrez le nombre numéro 2 : 14
etc.
Entrez le nombre numéro 20 : 6
Le plus grand de ces nombres est  : 14

Modifiez ensuite l’algorithme pour que le programme affiche de surcroît en quelle position avait été saisie ce nombre :

C’était le nombre numéro 2

Exercice 15

Réécrire l’algorithme précédent, mais cette fois-ci on ne connaît pas d’avance combien l’utilisateur souhaite saisir de nombres. La saisie des nombres s’arrête lorsque l’utilisateur entre un zéro.

Exercice 16

Lire la suite des prix (en euros entiers et terminée par zéro) des achats d’un client. Calculer la somme qu’il doit, lire la somme qu’il paye, et simuler la remise de la monnaie en affichant les textes “10 Euros”, “5 Euros” et “1 Euro” autant de fois qu’il y a de coupures de chaque sorte à rendre.

Exercice 17

Écrire un algorithme qui permette de connaître ses chances de gagner au tiercé, quarté, quinté et autres impôts volontaires.

On demande à l’utilisateur le nombre de chevaux partants, et le nombre de chevaux joués. Les deux messages affichés devront être :

Dans l’ordre : une chance sur X de gagner
Dans le désordre : une chance sur Y de gagner

X et Y nous sont donnés par la formule suivante, si n est le nombre de chevaux partants et p le nombre de chevaux joués (on rappelle que le signe ! signifie “factorielle”, comme dans l’exercice 5.7 ci-dessus) :

X = n ! / (n - p) !
Y = n ! / (p ! * (n – p) !)